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A Few Questions
• Why collect so much data from sensors, then

immediately compress it?
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A Few Questions
• Why collect so much data from sensors, then

immediately compress it?
• Is full image reconstruction possible from

incomplete Fourier data?
• How can knowledge of sparsity be exploited?
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Shepp-Logan Phantom
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Samples from Discrete FT

Candes, Romberg, Tao (2004)
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Direct Reconstruction
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“Smart” Reconstruction Exact
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Smart Reconstruction?
Minimize

∫

Image

|∇f(x)|dx

subject to

f̂(ξ) = f̂0(ξ), ξ ∈ D

wheref̂0 is the discrete Fourier data andD is the

(restricted) domain of knowledge.
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More Generally...
Suppose we are given

• An underdetermined problem
• Having a sparse solution
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More Generally...
Suppose we are given

• An underdetermined problem
• Having a sparse solution

Can we obtain
• the unique sparse solution?
• a good approximate solution, subject to noise?
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Model Problem
LetF : C

n → C
n be the discrete Fourier transform

f̂j =
n−1
∑

k=0

fke
2πijk/n, j = 0, . . . , n − 1.

ConsiderT = supp(f) ⊂ Z
n with |T | < n and

Ω ⊂ Z
n. We defineFT→Ω : C

|T | → C
|Ω| to be the

restricted transform

f̂j =
∑

k∈T

fke
2πijk/n, j ∈ Ω.
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Model Problem
Candes, Romberg, Tao studied when

f = 〈f0, . . . , fn−1〉

with T=supp(f ), can be recovered from

f̂ |Ω =
{

f̂j

∣

∣ j ∈ Ω ⊂ Z
n
}

.

Solution is unique ifn is prime and|T | ≤ 1
2 |Ω|.
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Model Problem
Why? Forn prime,FT→Ω is

• Injective (one-to-one) if|T | ≤ |Ω|

• Surjective (onto) if|T | ≥ |Ω|

• Bijective if |T | = |Ω|
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Model Problem
Why? Forn prime,FT→Ω is

• Injective (one-to-one) if|T | ≤ |Ω|

• Surjective (onto) if|T | ≥ |Ω|

• Bijective if |T | = |Ω|

Supposef, g are such that

• f̂ |Ω = ĝ|Ω and

• |supp(f )|≤ 1
2 |Ω| and |supp(g)|≤ 1

2 |Ω|.

Then |supp(f − g)|≤ |Ω|, henceFsupp(f−g)→Ω is

injective and thereforef − g = 0.
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Model Problem
In addition, the convex optimization problem

minimize ‖f‖1 =
n−1
∑

k=0

|fk|

subject to f̂ |Ω = FZn→Ωf

yields the unique solution.

What if n is not prime?
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Model Problem
For non-primen, subgroups ofZn spoil uniqueness.

For example, letn = k2 and|T | = k with fjk = 1 for

j = 0, . . . , k − 1. Thenf̂ = k · f , sof̂ vanishes on
setsΩ with |Ω| as large asn − k.

Solution:
• randomly chooseΩ and
• settle for high probability of uniqueness.
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Model Problem
Theorem (Candes, Romberg, Tao) Letf ∈ C

n be
supported on an unknown setT and chooseΩ ⊂ Z

n

of size|Ω| uniformly at random. For a given accuracy
parameterm, if

|T | ≤ Cm · (log n)−1 · |Ω|

then with probability at least1 − O(n−m), the
solution to the convex optimization problem

min ||g||1 s.t. f̂ |Ω = FZn→Ωg

is unique andg = f .
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Intuition
L1-norm minimization with hyperplane constraint
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Intuition
L1-norm minimization with hyperplane constraint

Contrast this withL2-norm minimization
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More General Problem
Recovery ofx from

• Underdetermined|Ω| × n systemAx = b

• Minimization of‖x‖1 =
∑

i |xi|

What properties mustA have?

What relation must hold between three sizes

|T | = ‖x‖0, |Ω| = dim(b), n = dim(x)?
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More General Problem
If the columns ofA are chosen uniformly at random
from the unit sphere of dimension dim(b) and

‖x‖0 ≤ C · [log dim(x)]−1 · dim(b),

whereC depends weakly on the probability of correct-

ness, then the solution of the same convex optimization

problem isx.
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Proof Tools
Restricted Isometry Property

• Sparse subsets of columns ofk × n-matrixA
must be approximately orthogonal

For eachM ⊂ {1, . . . , n}, let A[M] be thek × |M|
submatrix ofA consisting of columns indexed byM.

Defineδs as the smallest number obeying

(1 − δs) ‖x‖
2 ≤ ‖A[M]x‖2 ≤ (1 + δs) ‖x‖

2

for all subsetsM with |M| ≤ s and all vectorsx.
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Proof Tools
Restricted Isometry Property

Related toδs there isγs,s′, which is the smallest
number such that

|(A[M]x) · (A[M′]x′)| ≤ γs,s′‖x‖ ‖x
′‖

holds for alldisjoint setsM,M′ ⊂ {1, . . . n} of size

not exceedings ands′, respectively, and all vectorsx

andx′.
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Dantzig Selector
Candes, Tao studied underdetermined, noisy problem

Number of parametersn, number of measurementsk,
possiblyn ≫ k.

Assume measurementsy = Xβ + z, with
• β ∈ R

n parameters of interest

• z ∈ R
k noise i.i.d. N(0, σ2)

They obtain approximatioñβ as solution

of linear program.
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Dantzig Selector
The linear program

minimize ‖β̃‖1 subject to
∥

∥Xt
(

y − Xβ̃
)
∥

∥

∞
≤

(

1 − t−1
)
√

2 log n · σ

yields solutionβ̃ that with very high probability
satisfies

‖β̃ − β‖2 ≤ C2 · 2 log n ·
(

σ2 +
∑

i

min
(

βi
2, σ2

)

)

.

Compare with omitting the factor2 log n if the nonzero

locations ofβ were known in advance.
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Orthogonal Matching Pursuit
Tropp, Gilbert adapted a greedy algorithm to recover
x from knowledge ofA = (a1, a2, . . . , an) andb,
where column vectorsa1, . . . , an have unit norm.

• Choose columnj1 to maximizeaj1 · b

• Let residualr1 = b − (aj1 · b) aj1

• Repeat, for stepss = 2, . . . , ‖x‖0, picking
columnjs to maximizeajs

· rs−1

• New residualrs is obtained by removing fromb
the orthogonal projection ofb on the columns
chosen so far
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Orthogonal Matching Pursuit

Claims: compared to‖x‖1 minimization

• Faster
• Similar convergence properties

Distinctions will be understood through

numerical experience
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Caveats for C-R-T Shepp-Logan
Candes, Romberg, Tao interpretation of Shepp-Logan

• Blurs distinction between DFT and FT
• In tomography and MRI, true Fourier data are collected

• For discontinuous functions, DFT and FT very different

• FT requires a continuous, rather than discrete (pixel)

representation of image function

• Works for piecewise constant, not piecewise
smooth, images

Recovery of piecewise smooth images from truncated

Fourier data remains an open problem
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Numerical Experiments
Collaboration with Yu Chen (Courant Institue, NYU)

• Assume that, aside from discontinuities, available
Fourier data are complete

• Recall that discontinuities in function (resp.
derivative) along curves can be represented by
double (resp. single) layer potential

• Single and double layer densities can be
discretized as monopoles and dipoles

Orthogonal matching pursuit used in attempt to

recover dipoles
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Numerical Experiments
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Numerical Experiments
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Numerical Experiments
Shepp-Logan without outer two ellipses
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Numerical Experiments
Shepp-Logan without outer two ellipses
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Numerical Experiments
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Numerical Experiments
Prompted by unmet need to recover piecewise smooth
images from truncated Fourier data

• Shows that truncated Fourier data supplies
excellent, recoverable position information

• Suggests
• Dipoles should not be restricted to grid

• Asking how to “connect the dots”

• More experimentation needed
• More innovation in representation needed
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Summary
L1-norm minimization, subject to the constraint of an
underdetermined linear system

• Can be highly effective at sparse recovery
• Plausible workhorse, due to advances in interior

point methods
• Still costly enough to prompt alternatives

The bigger questions about sparse recovery remain
open

• Dantzig selector suggests great opportunity in
sparse estimation problems

• What about estimation in nonlinear setting?
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Sparse Recovery
Additional information

• Search Google for “L1 magic”
• Site http://www.acm.caltech.edu/l1magic

contains links, preprints
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